39 research outputs found

    Estudio y desarrollo de un sistema de detección de fallos en actuadores electromecánicos mediante el análisis de emisiones acústicas.

    Get PDF
    Rotating machinery is widely used in all of the industrials fields. In this sense, mechanical components are common elements in these systems. Therefore a periodic revision of the mechanical components of the system is required in order to guarantee the normal running conditions. Any failure or wear must be detected quickly and repaired before it affects to the machine’s integrity. The solution is making a preventive maintenance based on defect diagnosis. Acoustic emission is a new technology for fault diagnosis in mechanical elements that is gaining acceptance as a useful analysis tool in mechanical components despite of the classical vibration analysis. The aim of this project is the study of fault diagnosis methods, by means of acoustic emission signal analysis, applied to electromechanical systems. This study is made with the aim of developing a pseudo automatic fault detection system into an embedded platform, such a μprocessor board

    Chromatic monitoring of gear mechanical degradation based on acoustic emission

    Get PDF
    This paper presents a methodology for the feature estimation of a new fault indicator focused on detecting gear mechanical degradation under different operating conditions. Preprocessing of acoustic emission signal is performed by applying chromatic transformation to highlight characteristic patterns of the mechanical degradation. In this study, chromaticity based on the computation of the hue, light, and saturation transformation of the main acoustic emission intrinsic mode functions is performed. Then, a topology preservation approach is carried out to describe the chromatic signature of the healthy gear condition. Thus, the detection index can be estimated. It must be noted that the applied chromatic monitoring process only requires the characterization of the healthy gear condition, being applicable to a wide range of operating conditions of the gear. Performance of the proposed system is validated experimentally. According to the obtained results, the proposed methodology is reliable and feasible for monitoring gear mechanical degradation in industrial applications.Peer ReviewedPostprint (published version

    Contributions to industrial process condition forecasting applied to copper rod manufacturing process

    Get PDF
    Ensuring reliability and robustness of operation is one of the main concerns in industrial anufacturing processes , dueto the ever-increasing demand for improvements over the cost and quality ofthe processes outcome. In this regard , a deviation from the nominal operating behaviours implies a divergence from the optimal condition specification, anda misalignment from the nominal product quality, causing a critica! loss of potential earnings . lndeed, since a decade ago, the industrial sector has been carried out a significant effortAsegurar la fiabilidad y la robustez es uno de los principales objetivos en la monitorización de los procesos industriales, ya que estos cada vez se encuentran sometidos a demandas de producción más elevadas a la vez que se deben bajar costes de fabricación manteniendo la calidad del producto final. En este sentido, una desviación de la operación del proceso implica una divergencia de los parámetros óptimos preestablecidos, lo que conlleva a una desviación respecto la calidad nominal del producto final, causando así un rechazo de dicho producto y una perdida en costes para la empresa. De hecho, tanto es así, que desde hace más de una década el sector industrial ha dedicado un esfuerzo considerable a la implantación de metodologías de monitorización inteligente. Dichos métodos son capaces extraer información respecto a la condición de las diferentes maquinarias y procesos involucrados en el proceso de fabricación. No obstante, esta información extraída corresponde al estado actual del proceso. Por lo que obtener información respecto a la condición futura de dicho proceso representa una mejora significativa para poder ganar tiempo de respuesta para la detección y corrección de desviaciones en la operación de dicho proceso. Por lo tanto, la combinación del conocimiento futuro del comportamiento del proceso con la consecuente evaluación de la condición del mismo, es un objetivo a cumplir para la definición de las nuevas generaciones de sistemas de monitorización de procesos industriales. En este sentido, la presente tesis tiene como objetivo la propuesta de metodologías para evaluar la condición, actual y futura, de procesos industriales. Dicha metodología debe estimar la condición de forma fiable y con una alta resolución. Por lo tanto, en esta tesis se pretende extraer la información de la condición futura a partir de un modelado, basado en series temporales, de las señales críticas del proceso, para después, en base a enfoques no lineales de preservación de la topología, fusionar dichas señales proyectadas a futuro para conocer la condición. El rendimiento y la bondad de las metodologías propuestas en la tesis han sido validadas mediante su aplicación en un proceso industrial real, concretamente, con datos de una planta de fabricación de alambrón de cobre

    Industrial process monitoring by means of recurrent neural networks and Self Organizing Maps

    Get PDF
    Industrial manufacturing plants often suffer from reliability problems during their day-to-day operations which have the potential for causing a great impact on the effectiveness and performance of the overall process and the sub-processes involved. Time-series forecasting of critical industrial signals presents itself as a way to reduce this impact by extracting knowledge regarding the internal dynamics of the process and advice any process deviations before it affects the productive process. In this paper, a novel industrial condition monitoring approach based on the combination of Self Organizing Maps for operating point codification and Recurrent Neural Networks for critical signal modeling is proposed. The combination of both methods presents a strong synergy, the information of the operating condition given by the interpretation of the maps helps the model to improve generalization, one of the drawbacks of recurrent networks, while assuring high accuracy and precision rates. Finally, the complete methodology, in terms of performance and effectiveness is validated experimentally with real data from a copper rod industrial plant.Postprint (published version

    A variational model of fracture for tearing brittle thin sheets

    Get PDF
    Tearing of brittle thin elastic sheets, possibly adhered to a substrate, involves a rich interplay between nonlinear elasticity, geometry, adhesion, and fracture mechanics. In addition to its intrinsic and practical interest, tearing of thin sheets has helped elucidate fundamental aspects of fracture mechanics including the mechanism of crack path selection. A wealth of experimental observations in different experimental setups is available, which has been often rationalized with insightful yet simplified theoretical models based on energetic considerations. In contrast, no computational method has addressed tearing in brittle thin elastic sheets. Here, motivated by the variational nature of simplified models that successfully explain crack paths in tearing sheets, we present a variational phase-field model of fracture coupled to a nonlinear Koiter thin shell model including stretching and bending. We show that this general yet straightforward approach is able to reproduce the observed phenomenology, including spiral or power-law crack paths in free standing films, or converging/diverging cracks in thin films adhered to negatively/positively curved surfaces, a scenario not amenable to simple models. Turning to more quantitative experiments on thin sheets adhered to planar surfaces, our simulations allow us to examine the boundaries of existing theories and suggest that homogeneous damage induced by moving folds is responsible for a systematic discrepancy between theory and experiments. Thus, our computational approach to tearing provides a new tool to understand these complex processes involving fracture, geometric nonlinearity and delamination, complementing experiments and simplified theories.Peer ReviewedPostprint (author's final draft

    Enhanced Industrial Machinery Condition Monitoring Methodology based on Novelty Detection and Multi-Modal Analysis

    Get PDF
    This paper presents a condition-based monitoring methodology based on novelty detection applied to industrial machinery. The proposed approach includes both, the classical classification of multiple a priori known scenarios, and the innovative detection capability of new operating modes not previously available. The development of condition-based monitoring methodologies considering the isolation capabilities of unexpected scenarios represents, nowadays, a trending topic able to answer the demanding requirements of the future industrial processes monitoring systems. First, the method is based on the temporal segmentation of the available physical magnitudes, and the estimation of a set of time-based statistical features. Then, a double feature reduction stage based on Principal Component Analysis and Linear Discriminant Analysis is applied in order to optimize the classification and novelty detection performances. The posterior combination of a Feed-forward Neural Network and One-Class Support Vector Machine allows the proper interpretation of known and unknown operating conditions. The effectiveness of this novel condition monitoring scheme has been verified by experimental results obtained from an automotive industry machine.Postprint (published version

    Multimodal forecasting methodology applied to industrial process monitoring

    Get PDF
    IEEE Industrial process modelling represents a key factor to allow the future generation of industrial manufacturing plants. In this regard, accurate models of critical signals need to be designed in order to forecast process deviations. In this work a novel multimodal forecasting methodology based on adaptive dynamics packaging and codification of the process operation is proposed. First, a target signal is decomposed by means of the Empirical Mode Decomposition in order to identify the characteristics intrinsic mode functions. Second, such dynamics are packaged depending on their significance and modelling complexity. Third, the operating condition of the considered process, reflected by available auxiliary signals, is codified by means of a Self-Organizing Map and presented to the modelling structure. The forecasting structure is supported by a set of ensemble ANFIS based models, each one focused on a different set of signal dynamics. The performance and effectiveness of the proposed method is validated experimentally with industrial data from a copper rod manufacturing plant and performance comparison with classical approaches. The proposed method improves performance and generalization versus classical single model approaches.Peer ReviewedPostprint (author's final draft

    A data-driven-based industrial refrigeration optimization method considering demand forecasting

    Get PDF
    One of the main concerns of industry is energy efficiency, in which the paradigm of Industry 4.0 opens new possibilities by facing optimization approaches using data-driven methodologies. In this regard, increasing the efficiency of industrial refrigeration systems is an important challenge, since this type of process consume a huge amount of electricity that can be reduced with an optimal compressor configuration. In this paper, a novel data-driven methodology is presented, which employs self-organizing maps (SOM) and multi-layer perceptron (MLP) to deal with the (PLR) issue of refrigeration systems. The proposed methodology takes into account the variables that influence the system performance to develop a discrete model of the operating conditions. The aforementioned model is used to find the best PLR of the compressors for each operating condition of the system. Furthermore, to overcome the limitations of the historical performance, various scenarios are artificially created to find near-optimal PLR setpoints in each operation condition. Finally, the proposed method employs a forecasting strategy to manage the compressor switching situations. Thus, undesirable starts and stops of the machine are avoided, preserving its remaining useful life and being more efficient. An experimental validation in a real industrial system is performed in order to validate the suitability and the performance of the methodology. The proposed methodology improves refrigeration system efficiency up to 8%, depending on the operating conditions. The results obtained validates the feasibility of applying data-driven techniques for the optimal control of refrigeration system compressors to increase its efficiency.The authors would like to thank the support of Corporación Alimentaria Guissona S.A. for providing access to their refrigeration system dataset and their expert advice.Peer ReviewedPostprint (published version

    Improving the energy efficiency of industrial refrigeration systems by means of data-driven load management

    Get PDF
    A common denominator in the vast majority of processes in the food industry is refrigeration. Such systems guarantee the quality and the requisites of the final product at the expense of high amounts of energy. In this regard, the new Industry 4.0 framework provides the required data to develop new data-based methodologies to reduce such energy expenditure concern. Focusing in this issue, this paper proposes a data-driven methodology which improves the efficiency of the refrigeration systems acting on the load side. The solution approaches the problem with a novel load management methodology that considers the estimation of the individual load consumption and the necessary robustness to be applicable in highly variable industrial environments. Thus, the refrigeration system efficiency can be enhanced while maintaining the product in the desired conditions. The experimental results of the methodology demonstrate the ability to reduce the electrical consumption of the compressors by 17% as well as a 77% reduction in the operation time of two compressors working in parallel, a fact that enlarges the machines life. Furthermore, these promising savings are obtained without compromising the temperature requirements of each load.This research was partially funded by the Secretary of Universities and Research of the Department of Enterprise and Knowledge of the Generalitat de Catalunya under 2017DI007. The APC was funded by the University and Research Aid Management Agency of the Generalitat de Catalunya under 2017 SGR 967.Peer ReviewedPostprint (published version

    Data analytics for performance evaluation under uncertainties applied to an industrial refrigeration plant

    Get PDF
    Artificial intelligence has bounced into industrial applications contributing several advantages to the field and have led to the possibility to open new ways to solve many actual problems. In this paper, a data-driven performance evaluation methodology is presented and applied to an industrial refrigeration system. The strategy takes advantage of the Multivariate Kernel Density Estimation technique and Self-Organizing Maps to develop a robust method, which is able to determine a near-optimal performance map, taking into account the system uncertainties and the multiple signals involved in the process. A normality model is used to detect and filter non-representative operating samples to subsequently develop a reliable performance map. The performance map allows comparing the plant assessment under the same operating conditions and permits to identify the potential system improvement capabilities. To ensure that the resulting evaluation is trustworthy, a robustness strategy is developed to identify either possible new operation conditions or abnormal situations in order to avoid uncertain assessments. Furthermore, the proposed approach is tested with real industrial plant data to validate the suitability of the method.Peer ReviewedPostprint (published version
    corecore